Derivations and skew derivations of the Grassmann algebras
نویسنده
چکیده
Surprisingly, skew derivations rather than ordinary derivations are more basic (important) object in study of the Grassmann algebras. Let Λn = K⌊x1, . . . , xn⌋ be the Grassmann algebra over a commutative ring K with 12 ∈ K, and δ be a skew K-derivation of Λn. It is proved that δ is a unique sum δ = δ ev + δ of an even and odd skew derivation. Explicit formulae are given for δ and δ via the elements δ(x1), . . . , δ(xn). It is proved that the set of all even skew derivations of Λn coincides with the set of all the inner skew derivations. Similar results are proved for derivations of Λn. In particular, DerK(Λn) is a faithful but not simple AutK(Λn)module (where K is reduced and n ≥ 2). All differential and skew differential ideals of Λn are found. It is proved that the set of generic normal elements of Λn that are not units forms a single AutK(Λn)-orbit (namely, AutK(Λn)x1) if n is even and two orbits (namely, AutK(Λn)x1 and AutK(Λn)(x1 + x2 · · · xn)) if n is odd.
منابع مشابه
f-DERIVATIONS AND (f; g)-DERIVATIONS OF MV -ALGEBRAS
Recently, the algebraic theory of MV -algebras is intensively studied. In this paper, we extend the concept of derivation of $MV$-algebras and we give someillustrative examples. Moreover, as a generalization of derivations of $MV$ -algebraswe introduce the notion of $f$-derivations and $(f; g)$-derivations of $MV$-algebras.Also, we investigate some properties of them.
متن کامل$(odot, oplus)$-Derivations and $(ominus, odot)$-Derivations on $MV$-algebras
In this paper, we introduce the notions of $(odot, oplus)$-derivations and $(ominus, odot)$-derivations for $MV$-algebras and discuss some related results. We study the connection between these derivations on an $MV$-algebra $A$ and the derivations on its boolean center. We characterize the isotone $(odot, oplus)$-derivations and prove that $(ominus, odot)$-derivations are isotone. Finally we d...
متن کاملDERIVATIONS OF TENSOR PRODUCT OF SIMPLE C*-ALGEBRAS
In this paper we study the properties of derivations of A B, where A and B are simple separable C*-algebras, and A B is the C*-completion of A B with respect to a C*-norm Yon A B and we will characterize the derivations of A B in terms of the derivations of A and B
متن کاملDerivations of UP-algebras by means of UP-endomorphisms
The notion of $f$-derivations of UP-algebras is introduced, some useful examples are discussed, and related properties are investigated. Moreover, we show that the fixed set and the kernel of $f$-derivations are UP-subalgebras of UP-algebras,and also give examples to show that the two sets are not UP-ideals of UP-algebras in general.
متن کاملLie-type higher derivations on operator algebras
Motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study Lie-type higher derivations on operator algebras in the current work. It is shown that every Lie (triple-)higher derivation on some classical operator algebras is of standard form. The definition of Lie $n$-higher derivations on operator algebras and related pot...
متن کامل